概述
人工神经网络(Artificial Neural Network,即ANN ),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight)。神经网络就是通过这样的方式来模拟人类的记忆。
神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。
发展历史
神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。
1. 第一阶段:启蒙时期
(1)M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。
(2)Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。
(3)感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。
(4)ADALINE网络模型: 1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法。
2. 第二阶段:低潮时期
人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书。
(1)自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。
(2)自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。
3. 第三阶段:复兴时期
(1)Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。(2)Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。
(3)BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation)。
(4)并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论。
(5)细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。
(6)Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。
(7)1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
(8)1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
(9)1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。
(10)1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。
(11)90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。
经过多年的发展,已有上百种的神经网络模型被提出。
4. 第四阶段:高潮时期
深度学习(Deep Learning,DL)由Hinton等人于2006年提出,是机器学习(Machine Learning, ML)的一个新领域。深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。深度学习算法打破了传统神经网络对层数的限制,可根据设计者需要选择网络层数。
特点
神经网络是由存储在网络内部的大量神经元通过节点连接权组成的一种信息响应网状拓扑结构,它采用了并行分布式的信号处理机制,因而具有较快的处理速度和较强的容错能力。
1. 神经网络模型用于模拟人脑神经元的活动过程,其中包括对信息的加工、处理、存储、和搜索等过程。人工神经网络具有如下基本特点:
(1)高度的并行性:人工神经网络有许多相同的简单处理单元并联组合而成,虽然每一个神经元的功能简单,但大量简单神经元并行处理能力和效果,却十分惊人。
(2)高度的非线性全局作用:人工神经网络每个神经元接受大量其他神经元的输入,并通过并行网络产生输出,影响其他神经元,网络之间的这种互相制约和互相影响,实现了从输入状态到输出状态空间的非线性映射,从全局的观点来看,网络整体性能不是网络局部性能的叠加,而表现出某种集体性的行为。
(3)联想记忆功能和良好的容错性:人工神经网络通过自身的特有网络结构将处理的数据信息存储在神经元之间的权值中,具有联想记忆功能,从单一的某个权值并看不出其所记忆的信息内容,因而是分布式的存储形式,这就使得网络有很好的容错性,并可以进行特征提取、缺损模式复原、聚类分析等模式信息处理工作,又可以作模式联想、分类、识别工作。它可以从不完善的数据和图形中进行学习并做出决定。
(4)良好的自适应、自学习功能:人工神经网络通过学习训练获得网络的权值与结构,呈现出很强的自学习能力和对环境的自适应能力。
(5)知识的分布存储:在神经网络中,知识不是存储在特定的存储单元中,而是分布在整个系统中,要存储多个知识就需要很多链接。
(6)非凸性:一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
2. 人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。因此,它在功能上具有某些智能特点:
(1)联想记忆功能:由于神经网络具有分布存储信息和并行计算的性能,因此它具有对外界刺激和输入信息进行联想记忆的能力。
(2)分类与识别功能:神经网络对外界输入样本有很强的识别与分类能力。对输入样本的分类实际上是在样本空间找出符合分类要求的分割区域,每个区域内的样本属于一类。
(3)优化计算功能:优化计算是指在已知的约束条件下,寻找一组参数组合,使该组合确定的目标函数达到最小。
(4)非线性映射功能:在许多实际问题中,如过程控制﹑系统辨识﹑故障诊断﹑机器人控制等诸多领域,系统的输入与输出之间存在复杂的非线性关系,对于这类系统,往往难以用传统的数理方程建立其数学模型。
分类
(1)按性能分:连续型和离散型网络,或确定型和随机型网络。
(2)按拓扑结构分:前向网络和反馈网络。
前向网络,网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。
前向网络有自适应线性神经网络(AdaptiveLinear,简称Adaline)、单层感知器、多层感知器、BP等。
反馈网络,网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
反馈网络有Hopfield、Hamming、BAM等。
(3)按学习方法分:有教师(监督)的学习网络和无教师(监督)的学习网络。
(4)按连接突触性质分:一阶线性关联网络和高阶非线性关联网络。
应用领域
近些年来神经网络在众多领域得到了广泛的运用。
(1)在民用应用领域的应用,如语言识别、图像识别与理解、计算机视觉、智能机器人故障检测、实时语言翻译、企业管理、市场分析、决策优化、物资调运、自适应控制、专家系统、智能接口、神经生理学、心理学和认知科学研究等等;
(2)在军用应用领域的应用,如雷达、声纳的多目标识别与跟踪,战场管理和决策支持系统,军用机器人控制各种情况、信息的快速录取、分类与查询,导弹的智能引导,保密通信,航天器的姿态控制等。