现代的光纤通讯系统多半包括一个发射器,将电讯号转换成光讯号,再透过光纤将光讯号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光讯号转换回电讯号。在光纤通讯系统中传递的多半是数位讯号,来源包括电脑、电话系统,或是有线电视系统。
在光纤通讯系统中通常作为光源的半导体元件是发光二极管(light-emitting diode, LED)或是雷射二极管(laser diode)。LED与雷射二极管的主要差异在于前者所发出的光为非同调性(noncoherent),而后者则为同调性(coherent)的光。使用半导体作为光源的好处是体积小、发光效率高、可靠度佳,以及可以将波长最佳化,更重要的是半导体光源可以在高频操作下直接调变,非常适合光纤通讯系统的需求。
LED借着电激发光(electroluminescence)的原理发出非同调性的光,频谱通常分散在30纳米至60纳米间。LED另外一项缺点是发光效率差,通常只有输入功率的1%可以转换成光功率,约是100毫瓦特[micron (μ) Watt (μW)]左右。但是由于LED的成本较低廉,因此常用于低价的应用中。常用于光通讯的LED主要材料是砷化镓或是砷化镓磷(GaAsP),后者的发光波长为1300纳米左右,比砷化镓的810纳米至870纳米更适合用在光纤通讯。由于LED的频谱范围较广,导致色散较为严重,也限制了其传输速率与传输距离的乘积。LED通常用在传输速率10Mb/s至100Mb/s的局域网路(local area network, LAN),传输距离也在数公里之内。也有LED内包含了数个量子井(quantum well)的结构,使得LED可以发出不同波长的光,涵盖较宽的频谱,这种LED被广泛应用在区域性的波长分波多工网络中。
半导体雷射的输出功率通常在100微瓦特(μW)左右,而且为同调性质的光源,方向性相对而言较强,通常和单模光纤的耦合效率可达50%。雷射的输出频谱较窄,也有助于增加传输速率以及降低模态色散(model dispersion)。半导体雷射亦可在相当高的操作频率下进行调变,原因是其复合时间(recombination time)非常短。
半导体雷射通常可由输入的电流有无直接调变其开关状态与输出讯号,不过对于某些传输速率非常高或是传输距离很长的应用,雷射光源可能会以连续波(continuous wave)的形式控制,例如使用外接的电吸收光调变器(electroabsorption modulator)或是马赫·任德干涉仪(Mach-Zehnder interferometer)对光讯号加以调变。外接的调变元件可以大幅减少雷射的“啁啾脉冲”(chirp pulse)。啁啾脉冲会使得雷射的谱线宽度变宽,使得光纤内的色散变得严重。